Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone).

نویسندگان

  • Hong Yuan
  • Thies Schroeder
  • James E Bowsher
  • Laurence W Hedlund
  • Terence Wong
  • Mark W Dewhirst
چکیده

UNLABELLED Cu-Diacetyl-bis(N(4)-methylthiosemicarbazone) (Cu-ATSM) is a recently developed PET imaging agent for tumor hypoxia. However, its accuracy and reliability for measuring hypoxia have not been fully characterized in vivo. The aim of this study was to evaluate (64)Cu-ATSM as a hypoxia PET marker by comparing autoradiographic distributions of (64)Cu-ATSM with a well-established hypoxia marker drug, EF5. METHODS R3230 mammary adenocarcinomas (R3230Ac), fibrosarcomas (FSA), and 9L gliomas (9L) were used in the study. EF5 and Hoechst 33342, a vascular perfusion marker, were administered to the animal for immunohistochemical analysis. (64)Cu-ATSM microPET and autoradiography were performed on the same animal. The tumor-to-muscle ratio (T/M ratio) and standardized uptake values (SUVs) were characterized for these 3 different types of tumors. Five types of images-microPET, autoradiography, EF5 immunostaining, Hoechst fluorescence vascular imaging, and hematoxylin-and-eosin histology-were superimposed, evaluated, and compared. RESULTS A significantly higher T/M ratio and SUV were seen for FSA compared with R3230Ac and 9L. Spatial correlation analysis between (64)Cu-ATSM autoradiography and EF5 immunostained images varied between the 3 tumor types. There was close correlation of (64)Cu-ATSM uptake and hypoxia in R3230Ac and 9L tumors but not in FSA tumors. Interestingly, elevated (64)Cu-ATSM uptake was observed in well-perfused areas in FSA, indicating a correlation between (64)Cu-ATSM uptake and vascular perfusion as opposed to hypoxia. The same relationship was observed with 2 other hypoxia markers, pimonidazole and carbonic anhydrase IX, in FSA tumors. Breathing carbogen gas significantly decreased the hypoxia level measured by EF5 staining in FSA-bearing rats but not the uptake of (64)Cu-ATSM. These results indicate that some other (64)Cu-ATSM retention mechanisms, as opposed to hypoxia, are involved in this type of tumor. CONCLUSION To our knowledge, this study is the first comparison between (64)Cu-ATSM uptake and immunohistochemistry in these 3 tumors. Although we have shown that (64)Cu-ATSM is a valid PET hypoxia marker in some tumor types, but not for all, this tumor type-dependent hypoxia selectivity of (64)Cu-ATSM challenges the use of (64)Cu-ATSM as a universal PET hypoxia marker. Further studies are needed to define retention mechanisms for this PET marker.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of [64Cu] Pyruvaldehyde-bis (N4-methylthiosemicarbazone) complex as a PET and/or therapeutic radiopharmaceutical

Background: Copper-64 (T1/2=12.7 h) is an important radionuclide used both in PET imaging and therapy. [64Cu]-pyruvaldehyde-bis (N4-methylthiosemicarbazone) ([64Cu]-PTSM) is one of the most famous copper radiopharmaceuticals with unique specifications (suitable half life, stability, etc.). The wide range of 64Cu applications arouse great interest for its production. Materials and Methods: Cu-64...

متن کامل

Preclinical Positron Emission Tomographic Imaging of Acute Hyperoxia Therapy of Chronic Hypoxia during Pregnancy.

The goal of this work was to study the efficacy of the positron emission tomography (PET) tracers 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]ATSM) and in monitoring placental and fetal functional response to acute hyperoxia in late-term pregnant mice subjected to experimentally induced chronic hypoxia. E15 mice were maintained at 12% insp...

متن کامل

64Cu-ATSM internal radiotherapy to treat tumors with bevacizumab-induced vascular decrease and hypoxia in human colon carcinoma xenografts

Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is an antiangiogenic agent clinically used for various cancers. However, repeated use of this agent leads to tumor-decreased vascularity and hypoxia with activation of an HIF-1 signaling pathway, which results in drug delivery deficiency and induction of malignant behaviors in tumors. Here, we developed a novel strategy to...

متن کامل

Preliminary imaging studies of [61Cu]diacetyl-bis (N4-methylthiosemi-carbazone) in normal and hypoxic tumor models

  Introduction: [61Cu]diacetyl-bis(N4-methylthiosemicarbazone) ([61Cu]ATSM) is a well-established hypoxia imaging tracer with simple production and significant specifity. In this work the accumulation of the tracer is studied in wild-type, necrotic and hypoxic fibrosarcoma tumors. Methods: [61Cu]ATSM was prepared u...

متن کامل

Contribution of [64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical [18F]-MISO--a selected review.

During the carcinogenesis process, tumour cells often have a more rapid proliferation potential than cells that participate in blood capillary formation by neoangiogenesis. As a consequence of the poorly organized vasculature of various solid tumours, a limited oxygen delivery is observed. This hypoxic mechanism frequently occurs in solid cancers and can lead to therapeutic resistance. The pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 47 6  شماره 

صفحات  -

تاریخ انتشار 2006